ECTO

A Novel Proof-of-Stake Cryptocurrency
6.824 Final Project Writeup

Henry Aspegren, James Lovejoy
{henrya, jlovejoy} @ mit.edu

May 11, 2018

1 Introduction

Currently the most popular cryptocurrencies use Proof-of-Work. However this consensus mechanism
consumes large amounts of energy: Bitcoin alone uses more energy than the entire country of Cuba [1].
Proof-of-Stake has been proposed as an energy-efficient alternative. Much like Proof-of-Work, in Proof-
of-Stake, a single participant known as the leader, staker or block proposer, is selected to add a block to
the chain. Leaders are selected probabilistically in proportion to how much of the currency the leader has
"staked”. Ideally this ”stake” constitutes a bond that the leader will lose if she ”misbehaves.” Realizing
Proof-of-Stake in practice has been challenging. Indeed at the time of this writing, no Proof-of-Stake currency
has ever achieved widespread adoption'.

One of the main reasons for this is called the Nothing-at-Stake problem. In Proof-of-Work, equivocating
by proposing multiple blocks to extend competing chains requires the consumption of additional energy and
computational resources with real-world cost linear with the number of chains being extended. So to extend
5 competing chains simultaneously requires 5 times the real-world cost. Furthermore, any blocks that do not
end up in the canonical chain will not receive the associated rewards and the cost incurred to produce them
is permanently lost. This creates a strong incentive for a rational actor to mine on only one chain: the chain
that the network will eventually reach consensus on, where their mining rewards will be honored. However,
in existing Proof-of-Stake designs, the real-world computational cost of producing a block is deliberately
negligible. As a result there is no additional cost associated with producing 5 competing chains. In fact it
may be completely rational for a block proposer to extend as many possible system states simultaneously to
ensure that they will put a block in whatever chain the network eventually accepts.

Because of the Nothing-at-Stake problem, current Proof-of-Stake systems provide more limited guarantees
of eventual consistency than Proof-of~-Work. Any block proposer can trivially show equivalently valid system
states to different clients or in the case of a staker (or group of stakers) at any point having a majority of the
stake in the system, arbitrarily re-write long-established history. Existing Proof-of-Stake implementations
have solved this problem by using a developer-operated coordinator (sometimes distributed) that endorses a
canonical chain for clients to follow. In this work we propose a novel Proof-of-Stake consensus protocol that
disincentivizes equivocation and does not require a centralized coordinator to operate.

2 Related Work

2.1 PeerCoin

PeerCoin [2] was the first attempt at a Proof-of-Stake cryptocurrency. ECTO uses a consensus mech-
anism inspired by PeerCoin’s original design. However because of the Nothing-at-Stake problem PeerCoin
uses a centralized ” check-pointing” scheme. This is a major security concern since a corrupted check-pointing

1 As defined by being among the top 5 largest currencies by market cap

system is a single point of failure for the entire system and allows the developers to censor transactions or
rewrite history.

2.2 Algorand

Algorand [3] is another alternative to Proof-of-Work. However Algorand, as described by its authors,
is not Proof-of-Stake and has a different security argument entirely. The security of Algorand depends on
a Byzantine Agreement protocol that is run among a randomly selected set of participants. In Algorand,
7stake” can be used to determine the set of nodes in the system and their relative voting weights in the BA
protocol.

3 ECTO Consensus

In any blockchain-based system, the consensus algorithm must determine the following;:
1. Who is allowed to propose a given block?

2. Given multiple competing chains, which one should be followed?

3.1 Joining the Stake Pool

To participate in the consensus algorithm, the participant or staker must create a special transaction that
stakes coins. This stake constitutes a bond to the network that could be lost if the staker equivocates and
broadcasts a block that extends multiple competing chains. The staking transaction consists of following:

te = {value, publicK ey, R_point}

The value is the total number of coins staked, the R_point is a cryptographic commitment and the publicKey
is the public key of the potential future spender of the output. Later in the paper we will use the R-point
commitment to guard against equivocation. Once this transaction has been included in a block, the output’s
age will be initialized to 1 increase by 1 for every block after the inclusion block until the output is used to
propose a block when its age resets to 1.

This process contrasts to Proof-of-Work because it makes the system permissioned. A potential staker
needs to first have coins within the system and the ability to get their transactions included in the chain.
Proof-of-Work only requires computational resources to participate and is thus permissionless.

3.2 Selecting a Block Proposer

In Proof-of-Work, a miner (block proposer) can be anyone who can find a nonce such that
S H A256(block_id||nonce) < target_dif ficulty

where || is bitwise concatenation. The target_dif ficulty is regularly adjusted by the network as miners come
and go to keep the rate of block generation stable over time. The target is increased as average block time
increases to make the space of possible solutions larger, and decreased in the opposite case.

In ECTO , a block proposer is selected according to randomness associated with their stake rather than
their ability to brute-force a valid nonce. Instead a block proposer must meet the following criteria:

S H A256(randomness||output_id||block_timestamp) < target_dif ficulty * (value x age)

where value is the coin value of the stake output and age is the number of blocks that have passed since the
stake transaction was created or previously used to propose a block. Note that there is no nonce involved
and that the computation required is finite: it takes exactly one SH A256 hash per staked output per second
to participate in the consensus protocol. By comparison, commercial Bitcoin miners easily churn through
over 4 Billion SH A256 hashes per second, consuming orders of magnitude more energy. Additionally note
that the older and more valuable the stake transaction, the easier it is to propose a block. The calculation
of target_dif ficulty in ECTO is identical to Proof-of-Work.

Selecting the source of randommness requires careful thought for the system to be resistant to stake-
grinding. If the randomness source is too easy to malleate for the staker, they could permute the randomness
many times to increase their chance of being selected as a block proposer. In that case the system would
descend into Proof-of-Work and become a competition over who can malleate and hash the fastest. In
ECTO we use the block_id from maxz(1,n — 1000) blocks previously as the source of randomness with the
assumption that with a well-distributed stake pool it will be difficult for a staker to have regular influence
over a specific block_id from multiple days in the past.

3.3 Preventing Equivocation

Each block is required to be cryptographically signed by the owner of the private key associated with
the public key of the output being staked. By using Committed R-point Signatures [6] we are also able to
use the signature to disincentivize equivocation. In a regular Schnorr signature we use a common generator
point G and a private scalar a to form a public/private key pair. The public key A is generated as follows:

A=aCG

Given A and G it is assumed impossible to generate the private key a due to the hardness of the discrete
log problem. To sign a message m, one first generates another random private scalar r and calculates point
R.

R=rG
followed by:

s=1r—SHA256(m||R)a
The signature then consists of (s, R) and can be verified to prove knowledge of the private key a using
the public key as follows:
sG = R — SHA256(m||R)A
=rG — SHA256(m||R)aG

Since we assume it is impossible to calculate a from aG = A and r from rG = R then the signing party
must know both a and r. It is important that the signer uses a unique and non-deterministic r for every
message they sign or given two signatures s1, s3 and two messages mi, msy signed with the same r, one can
compute both a and r by solving the two equations:

hg = SHA256(m2||R)

s1=1r—hia

So =1 — haa

a = (hl — h2)71 * (32 — 51)
r = S9 + haa

Similarly to in Discreet Log Contracts, we exploit this property of Schnorr signatures to prevent equiv-
ocation. If a staker signs and broadcasts two competing blocks using the same R-point they reveal their
private key to the network effectively making their coins ”spend-to-anyone” outputs. Any peer who notices
equivocation would be able to claim the offenders coins as a punishment. Once a block has been broadcast
using a pre-committed R-point, the coins cannot be safely staked again until a new R-point has been com-
mitted to by either specifying it in the block where the previous R-point was used or by spending the output

Figure 1: Extending Multiple Chains
Ricommitted

b
l

Risigns

! |

- Rysigns «—— PrivKeyRevealed

[— |

Figure 2: Extending A Non-Canonical Chain
Ricommitted

b
|

StakeAgeFor feit —— Rocommitted

| !

Rasigns Rysigns

| — |

and specifying a new R-point in a new output as if entering the stake pool for the first time. This scheme
requires that stakers pick one branch of a fork to stake on.

In 1 the staker tried to equivocate but their private key is revealed once they bet on the second branch.
Anyone who notices this can take their staked coins.

In 2 the staker does equivocate by endorsing two competing chains. However to avoid losing his coins
he must first re-stake using Rs to replace R;. In doing so he forfeits his stake-age for that output hence
decreasing the probability he is selected as the next block proposer. Therefore it is highly unlikely that
the output with Ry committed will be selected before the chain where R; is used to sign has overtaken the
alternative branch.

3.4 Reaching Consensus

In Proof-of-Work, the network achieves consensus on a canonical chain with the most ’total work’. *Total
work’ in this context is the cumulative computational resources that produced the chain calculated as follows:

total_work[n] = Z UINT256_MAX — target_dif ficulty|height]
height=1

In ECTO , the network also follows with the chain with the most ’total work’, which is calculated
in an identical manner. However in ECTO this implicitly reflects the cumulative stake-age consumed to
produce the chain since each target is modulated according to the stake-age being consumed. In other
words the consensus algorithm follows the chain that was created using the oldest and most valuable outputs
cumulatively.

4 Implementation

To implement ECTO we used CryptoKernel [4], a software package being developed by the Digital Cur-
rency Initiative for rapid prototyping cryptocurrencies 2. CryptoKernel provides out-of-the-box networking,
storage and replicated state machine code while allowing developers to implement their own consensus mod-
ules and other features. We implemented ECTO by creating a new consensus module for CryptoKernel.
We used the [7] library to provide the signing, verifying and key generation primitives needed for committed
R-point signatures.

We have created a genesis block for ECTO and are currently running several nodes that are all par-
ticipating in the consensus process. Anyone can join the network and start using the protocol, using our
reference implementation on Github [5]. To join the network simply download the code in the repository
and follow the instructions in the README.

Because ECTO selects block proposers based on the amount of stake a user has, we have had to think
carefully about how distribute the initial coins. In our prototype there are no block rewards and all of the
coins were initially given to the Authors. However we have implemented a faucet where you can post your
public key and we will send you coins. Our goal is to distribute the vast majority of the coins to anyone who
would like them. The faucet can be accessed by emailing the paper authors with public keys.

In a real system it would be necessary to fairly and widely distribute the coins in the setup phase to
ensure that no individual or cabal is able to acquire a majority of the stake. If the developers cannot be
trusted to do this manually, having a period of Proof-of-Work to initialize the system and emit all the coins,
then switching to Proof-of-Stake has been a popular solution.

5 Analysis

WARNING the authors accept no responsibility for the security of ECTO ,
and it may be insecure and you may lose all of your money
Analyzing the security of cryptocurrencies is extremely difficult. A full analysis considers both the
security of the underlying protocol as well as the game-theoretic implications of rational participants. Actual
implementations almost always suffer from unforeseen vulnerabilities. A rigorous analysis is out of the scope
of this paper. However we will present a sketch of why we think ECTO might be secure.

5.1 Security Argument (Sketch)

The security of ECTO rests on the assumption that participants will choose to extend the chain with
the most total work. Because of our commitment scheme a participant can only safely chose to use a given
staked output once. If participants equivocate and try to re-use the staked output by extending multiple
chains, then they could lose their stake entirely. If participants chose to extend some other chain instead of
extending the longest chain, the implications are more subtle. The participant will not lose his stake, but
rather will lose the ability to propose a block on the canonical chain using that stake. This is sub-optimal
since the participant will lose out on any rewards associated with producing a block (in ECTO , these
are the transaction fees) and lose their accumulated stake-age. Thus participants have a strong incentive to
stake on the fork that the network will ultimately accept, since otherwise their opportunity to stake will be
wasted. This is conceptually similar to the argument that a miner in Proof-of-Work will only mine on the
longest chain.

As with all Proof-of-Stake systems, an individual or cabal at any point gaining a majority of the stake is
fatal. From the block where a majority is possible all subsequent history can later be re-written arbitrarily
and with negligible cost. Great care must be taken to construct the initial distribution such that this is
unlikely to happen.

2James Lovejoy is the lead developer of CryptoKernel and cschnorr

6 Conclusion

In the cryptocurrency community, Proof-of-Stake is a hotly debated alternative to energy-intensive Proof-
of-Work. However, to the best of our knowledge no one has been able to realize Proof-of-Stake in practice.
Furthermore, despite the interest there are few documented protocols and, to the best of our knowledge,
no open source implementations of Proof-of-Stake. This work presents a clear description of a Proof-of-
Stake algorithm that solves the Nothing-at-Stake problem and provides an open source implementation that
anyone can use. Our hope is that this work will help the community continue to debate and experiment
with Proof-of-Work alternatives.

References
[1] http://bigthink.com/strange-maps/bitcoin-consumes-more-energy-than-159-individual-countries
[2] https://peercoin.net/

[3] Gilad, Yossi, et al. ” Algorand: Scaling byzantine agreements for cryptocurrencies.” Proceedings of the
26th Symposium on Operating Systems Principles. ACM, 2017.

[4] https://dci.mit.edu/cryptokernel/
[5] https://github.com/henryaspegren/6.824-Final-Project
[6] Thaddeus Dryja. ”Discreet Log Contracts”. https://adiabat.github.io/dle.pdf

[7] https://github.com/metalicjames/cschnorr

	Introduction
	Related Work
	PeerCoin
	Algorand

	 ECTO Consensus
	Joining the Stake Pool
	Selecting a Block Proposer
	Preventing Equivocation
	Reaching Consensus

	Implementation
	Analysis
	Security Argument (Sketch)

	Conclusion

